
Int. J. Advanced Networking and Applications
Volume: 04 Issue: 05 Pages: 1710-1718 (2013) ISSN : 0975-0290

1710

 An Algorithm for Optimized Time, Cost, and
Reliability in a Distributed Computing

System
Pankaj Saxena

Department of Computer Applications, Teerthanker Mahaveer University, Moradabad (U.P), INDIA
Email: pankbly@gmail.com

Dr. Kapil Govil
Department of Computer Applications, Teerthanker Mahaveer University, Moradabad (U.P), INDIA

Email: drkapilgovil@gmail.com

--ABSTRACT--
Distributed Computing System (DCS) refers to multiple computer systems working on a single problem. A
distributed system consists of a collection of autonomous computers, connected through a network which enables
computers to coordinate their activities and to share the resources of the system. In distributed computing, a
single problem is divided into many parts, and each part is solved by different computers. As long as the
computers are networked, they can communicate with each other to solve the problem. DCS consists of multiple
software components that are on multiple computers, but run as a single system. The computers that are in a
distributed system can be physically close together and connected by a local network, or they can be
geographically distant and connected by a wide area network. The ultimate goal of distributed computing is to
maximize performance in a time effective, cost-effective, and reliability effective manner. In DCS the whole
workload is divided into small and independent units, called tasks and it allocates onto the available processors. It
also ensures fault tolerance and enables resource accessibility in the event that one of the components fails. The
problem is addressed of assigning a task to a distributed computing system. The assignment of the modules of
tasks is done statically. We have to give an algorithm to solve the problem of static task assignment in DCS, i.e.
given a set of communicating tasks to be executed on a distributed system on a set of processors, to which
processor should each task be assigned to get the more reliable results in lesser time and cost. In this paper an
efficient algorithm for task allocation in terms of optimum time or optimum cost or optimum reliability is
presented where numbers of tasks are more then the number of processors.

Keywords - Cost, Distributed Computing System (DCS), Reliability, Task, Time.

Date of Submission: 14, February 2013 Date of Acceptance: 10, March 2013

I. INTRODUCTION

Distributed Computing System (DCS) is a collection of
independent computers interconnected by transmission
channels that appear to the users of the system as a single
computer. Distributed systems are groups of networked
computers. The word distributed in terms such as DCS,
referred to computer networks where individual computers
were physically distributed within some geographical area.
The terms are nowadays used in a much wider sense. Each
node of DCS is equipped with a processor, a local
memory, and interfaces. The purpose of the distributed
system is to coordinate the use of shared resources or
provide communication services to the users. In distributed
computing, each processor has its own private memory
(distributed memory). The processors in a typical
distributed system run concurrently in parallel. The
required processing power for task assignment [25]
applications in a DCS can not be achieved with a single

processor. One approach to this problem is to use
DCS that concurrently process an application program
by using multiple processors. A task is a smallest
identifiable and essential piece of a job that serves as a unit
of work, and as a means of differentiating between the
various components of a project. It can also be understand
as usually assigned piece of work to the processor often to
be finished within a certain time. A task is a piece of code
that is to be executed and task allocation [2, 10, 16] refers
to the way that tasks are chosen, assigned, and
coordinated. Execution time is the time in which a single
instruction is executed. Execution cost [1, 5] can be termed
as the amount of value of resource used. The execution
cost of a task depends on the processor on which it is
executed (heterogeneous processors) and the
communication between two tasks depends only on
whether or not they are assigned to the same processor
(homogeneous network). Cost factor can be reduced by
taking advantage of heterogeneous computational

Int. J. Advanced Networking and Applications
Volume: 04 Issue: 05 Pages: 1710-1718 (2013) ISSN : 0975-0290

1711

capabilities. Reliability [3, 4, 8] is defined to be the
probability that the system will not fail during the time that
it is processing the tasks. The problem of task assignment
[17, 20, 21] in DCS has been studied for many years with
many variations. It is one of the fundamental optimization
problems in DCS. We consider that communicating tasks
are to be assigned to different processors with
communication links to minimize the overall execution and
communication cost [7] and to maximize the reliability
[11]. To optimize the performance of a DCS, several
issues arise such as the minimization of time and cost as
well as maximization of system reliability [9, 26].
2. OBJECTIVE
The objective of this paper is to design an algorithm to
enhance the performance of distributed network in terms of
optimized processing time, cost and reliability [15]. The
objective of this paper includes allocation of tasks
statically [6, 14] and to calculate the overall optimized
processing time, cost and reliability in a Distributed
Computing System (DCS). The main objective is to give
an algorithm in a better and easy way because many
algorithms exist in this reference so it is also an objective
to experiment the algorithm on different inputs for
developing a skilled algorithm. There are certain other
things such that a proper balancing of load [24] on
processors in a way that no processor should be in an idle
mode is also an objective in preparing the algorithm.
Objective is also that there must be the full advantage by
taking the tasks statically [19] in completing the work for
getting optimized time, cost and reliability in an efficient
manner.

3. NOTATIONS
T : Set of tasks
P : Set of processors
CM : Communication Matrix
PCTR : Processor Cost Time Reliability
MPCTR : Modified Processor Cost Time Reliability
FPCTR : Fused Processor Cost Time Reliability

4. TECHNIQUE
We have considered a set of task T, which contains three
tasks t1, t2, and t3, a set of processors P which contains
three processors p1, p2 and p3, also every task contains
some number of modules. For obtaining the optimal time
or cost or reliability for each task initially the emphasis
will be on those modules of tasks which have the
maximum probability of data transfer. Now, in case of time
and cost the elements will be added and in case of
reliability they will be multiplied. Now we have taken a
matrix in which the time, cost and reliability of modules
are defined and define a communication matrix by
considering the communication between tasks. On the
basis of highest communication we get a matrix namely
FPCTR (,,). Now from this table we can get the separate
tables for time, cost and reliability. Load count is taken as
an integer variable which contains binary values either 1 or
0. We will assign it a value 0 to the processor if no task is
assigned otherwise a value 1 will be assigned to the load

count. By considering that the preference should be given
to the idle processor we assign load count as 1 or 0. Now,
in each table we will do the addition of each row and will
also take the average of each row on the basis of sum of
each row. Now, we will subtract the values from average.
Negative and zero values will not be considered. For time
and cost [13, 18] minimum value will be allocated and for
reliability maximum value will be considered. Now the
tasks can be allocated [22, 23] for getting the optimized
results in terms of time, cost & reliability [12], also Etime,
Ecost and Ereliablity can be calculated. The function for
obtaining the overall assignment time [Etime], cost
[Ecost], and reliability [Ereliablity] is as follows-

The function for obtaining the overall assignment time
[Etime], cost [Ecost], and reliability [Ereliablity] is as
follows-





















= ∑ ∑
= =

n

1i

n

1j
ijij xETEtime (i)





















= ∑ ∑
= =

n

1i

n

1j
ijij xECEcost (ii)





















= ∏ ∑
= =

n

1i

n

1j
ijijxERyEreliablit (iii)



≥

=
Otherwise0,

processor j toassigned is task i if,1
 xWhere,

thth

ij

5. ALGORITHM
Step I : Start Algorithm

Step II : Take the set of different tasks T, Set of
different processors P and different modules
in each task.

Step III : Input the matrix PCTR (,,). Select
time/cost/reliability data corresponding to
each task as needed.

Step IV : Input matrix CM (,,) by considering the
communication time between modules of each
task.

Step V : Consider each task on the basis of time or cost
or reliability.

Step VI : On the basis of Step 5 we get the matrix
MPCTR (,,). This matrix will be derived from
matrix PCTR (,,).

Step VII : Fused the modules of tasks in MPCTR (,,), on
the basis of highest communication we get the
matrix FPCTR (,,).

Step VIII : From FPCTR (,,) we can take separate tables
for time, cost and reliability.

Step IX : While (all tasks! = allocated)
Step X : {

a. We store the addition and average of
each row for time, cost and reliability
separately into a table.

Int. J. Advanced Networking and Applications
Volume: 04 Issue: 05 Pages: 1710-1718 (2013) ISSN : 0975-0290

1712

b. on selecting corresponding processing
time/cost/reliability by subtracting it
from average of corresponding row we
get revised processing RPRM (,).
Negative and zero values will not be
considered.

c. for time and cost minimum value will be
allocated and for reliability maximum
value will be considered from Table I,II
and III respectively.

d. assign a load count 1 if the task is
allocated , otherwise a 0 check value will
be assigned, by doing this the preference
will be given to the processor which has
a 0 load count to distribute the tasks for
balancing the load

}
Step XI : Compute the processor wise overall

processing time, cost and reliability.
Step XII : Display the result.

Step XIII : End of algorithm.

6. IMPLEMENTATION
Let us consider a set of tasks T. This set consists three
tasks t1, t2, and t3. We may define it as, T= {t1, t2, t3}. Now,
consider the task t1 has a set of task M1. This set consists
the five modules. We may define it as, M1= {m11, m12, m13,
m14, m15}. Now, for task t2 considers the set of task
M2.This set consists the four modules. We may define it
as, M2= {m21, m22, m23, m24}. Now, for task t3 considers the
set of task M3. This set consists the six modules. We may
define it as, M3= {m31, m32, m33, m34, m35, m36}. The total
number of processors are three and it can be define as, P=
{p1, p2, p3}. The graphical representation of this problem is
shown in figure 1.

 Figure1: Task allocation in DCS

For different task t1, t2 and t3 there are three set of tasks
M1, M2 and M3. These set of tasks contains different
individual tasks components which are called modules.

The processing time (t), cost (c) and reliability (r) of each
module of every task on various processors are known and
mentioned in the matrix namely, PCTR (,,)-

999221.02500170999281.02300110999450.02300140m
999210.02700200999280.02900140999429.02900150m
999409.02800210999275.02700190999428.02800105m
999407.02900290999277.02500180999427.02600110m
999405.02700180999288.02100175999425.02500190m
999144.02200160999782.02000155999321.02100100m
999103.02100160999701.03000150999222.02700160m
999903.02300155999222.02900170999220.02600080m
999775.02400070999444.02800080999981.02200190m
999772.02500080999329.02500090999781.03000180m
999786.02600100999327.02800090999555.02100130m
999701.02100110999224.02700100999505.02900125m
999390.02900130999223.02100110999123.02600110m
999384.02800120999225.03000150999321.02500160m
999301.02700130999201.02000140999456.02000150m

rctrctrctModulesTasks
pppProcessors

36

35

34

333

32

31

24

23

222

21

15

14

131

12

11

321

−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−

t

t

t

The considered communication time among the modules
of each task is mentioned in the matrices, namely CM (,,).

For task t1, the matrix CM (1,) is as:



























0m
20m
730m
1640m
34890m

mmmmm

15

14

13

12

11

1514131211

For task t2, the matrix CM (2,) is as:























0m
20m
780m
9940m

mmmm

24

23

22

21

24232221

For task t3, the matrix CM (3,) is as:

Int. J. Advanced Networking and Applications
Volume: 04 Issue: 05 Pages: 1710-1718 (2013) ISSN : 0975-0290

1713





























0m
20m
490m
7560m
28960m
314730m

mmmmmm

36

35

34

33

32

31

363534333231

Here it is considered that task t1 is based on the constraint
of execution time (one may choose the either cost or
reliability constraint), task t2 is based on the constraint of
cost (one may choose the either time or reliability
constraint), and task t3 is based on the constraint of
reliability (one may choose the either time or cost
constraint).

Hence, we can use the following form of data from matrix
PCTR (,,) i.e. execution time for task t1, execution cost for
task t2, and execution reliability for task t3 and can get the
matrix namely MPCTR (,,) in the following way-

999221.0999281.0999450.0m
999210.0999280.0999429.0m
999409.0999275.0999428.0mt
999407.0999277.0999427.0m
999405.0999288.0999425.0m
999144.0999782.0999321.0m

210030002700m
230029002600mt
240028002200m
250025003000m

100090130m
110100125m
130110110mt
120150160m
130140150m

rctrctrctModulesTasks
pppProcessors

36

35

343

33

32

31

24

232

22

21

15

14

131

12

11

321

−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−

−−−−−−
−−−−−−
−−−−−−
−−−−−−

−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−

−−−−−−

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

Now, the task t1 have five modules so on the basis of
highest communication the modules m11&m12, m13&m15
will be fused. The task t2 have four modules so on the basis
of highest communication the modules m21&m23 will be
fused. The task t3 have six modules so on the basis of
highest communication the modules m32&m34, m31&m33,
m35&m36 will be fused. The resulting matrix namely
FPCTR (,,) will be:









































−−−−−−
−−−−−−
−−−−−−

−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−
−−−−−−

−−−−−−

999232.0998561.0999879.0m*m
998433.0999059.0998748.0m*mt
998988.0998563.0998853.0m*m

230030002700m
220028002200mt
430054005600m*m

110100125m
230200240m*mt
250290310m*m

rctrctrctModulesTasks
pppProcessors

3635

33313

3432

24

222

2321

14

15131

1211

321

������

������

������

������

������

������

������

������

������

Now, from the FPCTR (,,) table we can get three tables
namely Table I, Table II and Table III which are given
below-

Table I: Processing Time

110230250p
100200290p
125240310p
m m*mm*m

3

2

1

1415131211

Table II: Processing Cost

230022004300p
300028005400p
270022005600p
mmm*m

3

2

1

24222321

Table III: Processing Reliability

3 2 3 4 3 1 3 3 3 5 3 6

1

2

3

m * m m * m m *m
p 0 .9 9 8 8 5 3 0 .9 9 8 7 4 8 0 .9 9 9 8 7 9
p 0 .9 9 8 5 6 3 0 .9 9 9 0 5 9 0 .9 9 8 5 6 1
p 0 .9 9 8 9 8 8 0 .9 9 8 4 3 3 0 .9 9 9 2 3 2

Now for Table I which is for time factor, we will take the
sum and average of each row, then will subtract the
processing time from average. Now Assign a Load Count
1 if the task is allocated, otherwise a 0 Load Count will be
assigned, by doing this the Preference will be given to the

Int. J. Advanced Networking and Applications
Volume: 04 Issue: 05 Pages: 1710-1718 (2013) ISSN : 0975-0290

1714

processor which has a 0 Load Count to distribute the tasks
for balancing the load. Negative and zero values will not
be considered. Now for time and cost we will consider the
minimum value and for reliability maximum value will be
taken for allocating to the processor from the above table.
By implementing these steps in Table II which is for cost
factor and in Table III which is for reliability factor we
will get the following three tables-

Table IV: Overall Processing Time

1110mp
6401290m*mp

1240m*mp
EtimeCount LoadTime taskAllocatedprocessors

143

12112

15131

Results of Table IV can be shown graphically as in figure
2-

Figure2: Processing Time by Processors

Table V: Overall Processing Cost

12300mp
1070012800mp

15600m*mp
EcostCount LoadCostTask Allocatedprocessor

243

212

23221

Results of Table V can be shown graphically as in figure
3-

Figure 3: Processing Cost in Completing Tasks

Table VI: Overall Processing Reliability

1998433.0m*mp
995852.01998561.0m*mp

1998853.0m*mp
yEreliablitValueCheck ReliablityTask AllocatedeProcessor

36333

32312

35341

Results of Table VI can be shown graphically as in figure
4-

Figure 4: Processing Reliability in Completing Tasks

7. CONCLUSION
In the present paper conclusively we design an algorithm
for achieving better performance to enhance the efficiency
on Distributed Computing System (DCS) in terms of
optimized time, cost and reliability. We have taken a
problem to assign the task to the processors where the
numbers of tasks are greater then the number of processors
in a DCS and the presented algorithms on different inputs

0.9982
0.9983
0.9984
0.9985
0.9986
0.9987
0.9988
0.9989

m34*m35 m31*m32 m33*m36

p p p

Processing Reliability

0
1000
2000
3000
4000
5000
6000

m22*m23 m21 m24

p p p

Processing Cost

0
50

100
150
200
250
300
350

m13*m15 m11*m12 m14

p p p

Processing Time

Int. J. Advanced Networking and Applications
Volume: 04 Issue: 05 Pages: 1710-1718 (2013) ISSN : 0975-0290

1715

show better performance while comparing the results with
some other algorithms. We get this conclusion by taking
three tasks namely t1, t2 and t3 with many modules, for
process the task t1 in minimum time, task t2 in minimum
cost and task t3 with maximum reliability. This algorithm
shows the optimized results as shown in the table given
below-

1 2 3

1 13 15 11 12 14

2 22 23 21 24

3 34 35 31 32 33 36

Processors Optimal Optimal Optimal
Tasks p p p Etime Ecost Ereliablity

t m *m m *m m 640
t m *m m m 10700
t m *m m *m m *m 0.995852

� �

� �

� �

The analysis of any algorithm specifically emphasis on
time complexity. The time complexity is a measure of the
amount of time required to execute an algorithm. Time
complexity expresses the relationship between the size of
the input and the run time for the algorithm. It is a function
of input size ’n’.The time complexity of the above
mentioned algorithm is O (mn). By taking several input
examples, the above algorithm gives the results mentioned
below-

91137
84127
66116
60106
4595
4085
2874
2464
1553
1243

Results Optimal task(m)of No.(n)Processors No.of

The graphical representation of the above results are
shown by figure 5, 6, 7, 8 and 9 as given below-

No. of Processors:3

0
1
2
3
4
5
6

1 2

N
o.

 o
f t

as
ks

(m
)

0

5

10

15

20

O
pt

im
al

 re
su

lts

No. of tasks(m) Optimal Results

 Figure 5: Processor Wise Complexity

No. of Processors:4

5.5

6

6.5

7

7.5

1 2

N
o.

 o
f t

as
ks

(m
)

22

24

26

28

30

O
pt

im
al

 re
su

lts

No. of tasks(m) Optimal Results

 Figure 6: Processor Wise Complexity

No. of Processors:5

7.5

8

8.5

9

9.5

1 2

N
o.

 o
f t

as
ks

(m
)

36

38
40
42
44
46

O
pt

im
al

 re
su

lts

No. of tasks(m) Optimal Results

 Figure 7: Processor Wise Complexity

No. of Processors:6

9.5

10

10.5

11

11.5

1 2

N
o.

 o
f t

as
ks

(m
)

56
58
60
62
64
66
68

O
pt

im
al

 re
su

lts
No. of tasks(m) Optimal Results

 Figure 8: Processor Wise Complexity

Int. J. Advanced Networking and Applications
Volume: 04 Issue: 05 Pages: 1710-1718 (2013) ISSN : 0975-0290

1716

No. of Processors:7

11.5

12

12.5

13

13.5

1 2

N
o.

 o
f t

as
ks

(m
)

80
82
84
86
88
90
92

O
pt

im
al

 re
su

lts

No. of tasks(m) Optimal Results

 Figure 9: Processor Wise Complexity

The performance of the suggested algorithm is compared
with the algorithm suggested by H.kumar et al [13] as the
given table shows the comparison of time complexity
between algorithm [13] and our algorithm-

91260137
84228127
66187116
60160106
4512695
4010485
287774
246064
154053
122843

O(mn)mn)O(m
algorithmPresent 13]algorithm[

of complexity Timeof complexity TimeTasks(m)(n)Processors

2 +

From the above table it is clear that algorithm proposed by
us is much better for the optimal allocation of tasks for
enhancing the performance of distributed computing
system. The graphical representation is given below
between algorithm [13] and present algorithm by figure 10,
11, 12, 13 and 14.

No. of Processors(n):3

0

20

40

60

0 1 2 3 4 5 6

No. of tasks(m)

Co
m

pl
ex

ity

algorithm[13] present algorithm

FIGURE 10: Complexity Comparisons

No. of Processors(n):4

0

50

100

5.8 6 6.2 6.4 6.6 6.8 7 7.2

No. of tasks(m)

Co
m

pl
ex

ity

algorithm[13] present algorithm

FIGURE 11: Complexity Comparisons

No. of Processors(n):5

0

50

100

150

7.8 8 8.2 8.4 8.6 8.8 9 9.2

No. of tasks(m)

Co
m

pl
ex

ity

algorithm[13] present algorithm

 FIGURE 12: Complexity Comparison

No. of Processors(n):6

0
50

100
150
200

9.8 10 10.2 10.4 10.6 10.8 11 11.2

No. of tasks(m)

Co
m

pl
ex

ity

algorithm[13] present algorithm

FIGURE: 13 Complexity Comparisons

Int. J. Advanced Networking and Applications
Volume: 04 Issue: 05 Pages: 1710-1718 (2013) ISSN : 0975-0290

1717

No. of Processors(n):7

0

100

200

300

11.8 12 12.2 12.4 12.6 12.8 13 13.2

No. of tasks(m)

Co
m

pl
ex

ity
algorithm[13] present algorithm

FIGURE: 14 Complexity Comparisons

8. REFERENCES
[1] Anju Khandelwal, Optimal Execution Cost of

Distributed System through Clustering, International
Journal of Engineering Science and Technology, 3(3),
2011, 2320-2328.

[2] Ahmed Younes, and Hamed, Task Allocation for
Minimizing Cost of Distributed Computing Systems
Using Genetic Algorithms, International Journal of
Advanced Research in Computer Science and
Software Engineering, 2(9), 2012, 1202-1209.

[3] Ajit Kimar Verma, and Mangesh Trimbak
Tamhankar, Reliability Based optimal Task
Allocation in Distributed Database Management
Systems, IEEE Transactions on Reliability, 46(4),
1997, 453-459.

[4] Anurag Raii, and Vikram Kapoor, Reliable Clustering
Model for Enhancing Processors Throughput in
Distributed Computing System, International Journal
of Computer Applications, 38(8), 2012, 47-50.

[5] Boeres, Cristina1, Rebello, and Vinod E.F., A
versatile cost modeling approach for multicomputer
task scheduling, Journal of Parallel Computing, 25(1),
1999, 63-86.

[6] Braun Tracy D, Siegel Howard Jay, Maciejewski
Anthony A, and Hong Ye, Static resource allocation
for heterogeneous computing environments with tasks
having dependencies, priorities, deadlines, and
multiple versions, Journal of Parallel and
Distributed Computing, 68(11), 2008, 1504-1516.

[7] Bo yang, Huajun Hu, and Suchang Guo, Cost-oriented

task allocation and hardware redundancy policies in
heterogeneous distributed computing systems
considering software reliability, Journal Computers
and Industrial Engineering, 56(4), 2009, 1687-1696.

[8] Dr. Kapil Govil, Processing Reliability based a Clever
Task Allocation Algorithm to Enhance the
Performance of Distributed Computing Environment,

International Journal of Advanced Networking and
Applications, 3(1), 2011, 1025-1030.

[9] D. Coit, and A. Smith, Reliability optimization of
series-parallel systems using genetic algorithm, IEEE
Transaction on Reliability, 45(2), 1996, 254-266.

[10] G.sagar, Anil K, and Sarj E, Task allocation model for
distributed systems, International Journal of Systems
Science, 22(9), 1991, 1671-1678.

[11] Gamal Attiya, and Yskandar Hama, Task allocation
for maximizing reliability of distributed systems: A
simulated annealing approach, Journal of Parallel and
Distributed Computing, 66(10), 2006, 1259-1266.

[12] Hsieh, Chung-Chi, Hsieh, and Yi-Che, Reliability and

cost optimization in distributed computing systems,
Journal of Computers & Operations Research, 30(8),
2003, 1103-1119.

[13] H.Kumar, A task allocation model for distributed data

network, Journal of Mathematical Sciences, 1(4),
2006, 379-392.

[14] Keren A, and Barak A, Opportunity cost algorithms

for reduction of I/O and inter process communication
overhead in a computing cluster, IEEE Transaction on
Parallel and Distributed Systems, 14(1), 2003, 39-50.

[15] Marwa Shouman, Gamal Attiya, and Ibrahim Z.

Morsi, Static Workload Distribution of Parallel
Applications in Heterogeneous Distributed Computing
Systems with Memory and Communication Capacity
Constraints, International Journal of Computer
Applications, 34(6), 2011, 18-24.

[16] Manoj B.S, Sekhar Archana, and Siva Ram Murthy C,
A state-space search approach for optimizing
reliability and cost of execution in distributed sensor
networks, Journal of Parallel and Distributed
Computing, 69(1), 2009, 12-19.

[17] Manisha Sharma, Harendra Kumar, and Deepak Garg,
An Optimal Task Allocation Model through
Clustering with Inter-Processor Distances in
Heterogeneous Distributed Computing Systems,
International Journal of Soft Computing and
Engineering, 2(1), 2012, 50-55.

[18] Mostapha Zbakh, and Said El Hajji, Task allocation
problem as a non cooperative game, Journal of
Theoretical and Applied Information Technology,
16(2), 2010, 110-115.

[19] Najjar Faïza, Slimani, and Yahya, Extension of the

one-shot semi join strategy to minimize data
transmission cost in distributed query processing,
Journal of Information Sciences, 114(1), 1999, 1-21.

Int. J. Advanced Networking and Applications
Volume: 04 Issue: 05 Pages: 1710-1718 (2013) ISSN : 0975-0290

1718

[20] Nirmeen A. Bahnasawy, Fatma Omara, Magdy A.
Koutb, and Mervat Mosa, A new algorithm for static
task scheduling for heterogeneous distributed
computing system, International Journal of
Information and Communication Technology
Research, 1(1), 2011, 10-19.

[21] Pradeep Kumar Yadav, M.P. Singh, and Kuldeep
Sharma, Task Allocation Model for Reliability and
Cost optimization in Distributed Computing System,
International Journal of Modeling, Simulation and
Scientific Computations, 2(2), 2011, 1-19.

[22] P. K. Yadav, M. P. Singh, and Kuldeep Sharma, An
Optimal Task Allocation Model for System Cost
Analysis in Heterogeneous Distributed Computing
Systems: A Heuristic Approach, International Journal
of Computer Applications, 28(4), 2011, 30-37.

[23] Peng-Yeng Yin, Shiuh-Sheng Yu, Pei-Pei Wang, and
Yi-Te Wang, Task allocation for maximizing
reliability of a distributed system using hybrid particle
swarm optimization, Journal of Systems and
Software, 8(5), 2007, 724-735.

[24] Qin-Ma Kang, Hong He, Hui-Min Song, and Rong
Deng, Task allocation for maximizing reliability of
distributed computing systems using honeybee mating
optimization, Journal of Systems and Software,
83(11), 2010, 2165–2174.

[25] Shu Wanneng, Wang Jiangqing, and Min-Min

Chromosome, Genetic Algorithm for Load Balancing
in Grid Computing, International Journal of
Distributed Sensor Network, 5(1), 2009, 62-63.

[26] Sagar G, Sarje, Anil K. Ahmed, and Kamal U., Task

allocation techniques for distributed computing
systems: a review, Journal of Microcomputer
Applications, 12(2), 1989, 97-105.

[27] Vidyarthi D.P., and Tripathi A.K., Maximizing
reliability of distributed computing system with task
allocation using simple genetic algorithm, Journal of
System Architecture, 47(6), 2001, 549-554.

